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Abstract

This paper deals with the methods of determination of permeability in saturated and partially saturated conditions

for low permeable porous rocks such as argillites. The modified version of the pulse test proposed by Hsieh et al. [Int. J.

Rock Mech. Min. Sci. Geomech. Abstr. 18 (1981) 245] has been used to characterize permeability in the saturated case.

It enables the hydraulic diffusivity and then the intrinsic permeability and the specific storage coefficient to be char-

acterized. In partially saturated conditions the method of saline solution to impose relative humidity and then capillary

pressure has been used. The permeability in the partially saturated range can be deduced form measurements of

transient weight loss and deformations of a sample submitted to a decrease of relative humidity in an hermetic chamber.

In the two cases, pulse and drying tests, original experimental devices have been developed. The parameter-identifi-

cation procedure based on the solution of corresponding inverse problems is presented. First approach explicit or semi-

explicit solutions for the direct problems are used. It shows that the simplified linear approach is useful to obtain correct

order of magnitude of unknowns parameters.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In underground radioactive waste isolation project

the transport properties of the surrounding rock mass

are of fundamental importance to ensure the security

(short term) and the safety (long term) of the site. In

short term (from the underground opening until the

post-closure period), the rock behaviour (influenced by

the excavation, the ground support. . .) must ensure the
stability of the excavation for worker health and safety

whereas in long term (after the post-closure period), the

confinement performances of the site must meet the
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objective of waste isolation from the accessible envi-

ronment. During both periods, rock performances (rock

mass stability and confining capacities) are highly

dependent on intrinsic permeability and specific storage.

In the ANDRA underground waste isolation project,

due to the very low permeability of the argillite

(k � 10�20–10�22 m2), the hydromechanical character-

ization in laboratory is limited. Below a certain perme-

ability level, it becomes nearly impossible to conduct

drained tests, to measure the pore fluid pressure or to

control the saturation degree. Therefore the determina-

tion of its permeability is essential in order to master

the experimental characterization of argillite coupled

behaviour.

1.1. Saturated case

At the repository scale, although transmissive frac-

tures could control the hydraulic behaviour of the

surrounding clayey unit, Neuzil et al. [17] pointed out
ed.
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Nomenclature

b Biot coefficient (–)

c vector of unknown parameters (–)

Cvp concentration of vapour (–)

Cu
re upstream reservoir compressibility (pulse)

(Pa/m3)

Cd
re downstream reservoir compressibility

(pulse) (Pa/m3)

D liquid diffusivity (m2/s)

hr relative humidity (–)

F Fick coefficient (m2/s)

kin intrinsic permeability (m2)

Kap apparent permeability (m/s)

Krel
lq relative permeability to liquid (–)

Krel
gz relative permeability to gas (–)

Kun undrained bulk modulus (Pa)

K0 drained bulk modulus (Pa)

Klq inverse of compressibility of liquid water

(Pa)

Ks inverse of compressibility of solid (Pa)

M Biot modulus (Pa)

Mol
vp molar mass of vapour (kg/mol)

Mol
da molar mass of dry air (kg/mol)

Mlq total mass of liquid contained the sample

(drying test) (kg)

Mu
lq total mass of liquid contained in upstream

reservoir (kg)

Md
lq total mass of liquid contained in down-

stream reservoir (kg)

M lq specific liquid velocity vector (kg/m2/s)

Mda specific dry air velocity vector (kg/m2/s)

Mgz specific gas velocity vector (kg/m2/s)

Mvp specific vapour velocity vector (kg/m2/s)

mlq volumetric mass content of liquid (kg/m3)

mda volumetric mass content of dry air (kg/m3)

mvp volumetric mass content of vapour (kg/m3)

Mmes total number of measured data points (–)

N poroelastic constant (Pa)

patm atmospheric pressure (Pa)

pcp capillary pressure (Pa)

plq liquid pressure (Pa)

pgz gas pressure (Pa)

pda dry air pressure (Pa)

pvp water vapour pressure (Pa)

psatvp saturated water vapour pressure (Pa)

R universal perfect gas constant (J/kg/mol)

Ss storage coefficient (1/Pa)

Sure upstream reservoir storage coefficient

(Pam2)

Sdre downstream reservoir storage coefficient

(Pam2)

s Laplace variable (1/s)

T temperature (K)

t dimensional time (s)

t� dimensionless time (–)

z dimensional axial coordinate (–)

z� dimensionless axial coordinate (–)

Greek symbols

b dimensionless parameter (pulse) (–)

ev volumetric deformation (–)

c ratio of reservoir compressibilities (pulse) (–)

clq volumetric weight of liquid (N/m3)

klq liquid conductivity (m2/Pa/s)

kgz gas conductivity (m2/Pa/s)

llq dynamic liquid viscosity (Pam)

lgz dynamic gas viscosity (Pam)

x dimensionless pore pressure in pulse test (–)

X volume of the sample (m3)

/ porosity (–)

p equivalent pore pressure (Pa)

qlq volumetric mass of liquid (kg/m3)

qda volumetric mass of dry air (kg/m3)

qvp volumetric mass of vapour (kg/m3)

h theoretical value

hmes experimental data

rm mean stress (Pa)

fu volume of liquid contained in upstream

reservoir (m3)

fd volume of liquid contained in downstream

reservoir (m3)

| cost functional (–)

Subscripts

0 initial state

1 asymptotic value state (drying test)

Superscript

imp imposed value (drying test)
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that the permeability of many clayey formations is

apparently scale independent (or relative to the intrinsic

permeability). Consequently the understanding of the

fluid transport rates in these low permeability rocks is of

fundamental importance to study the waste isolation.

Because of the long period required for a single test

for very low intrinsic permeability, the conventional
measuring techniques such as constant-head are im-

practicable. Brace et al. [2] introduced a transient flow

method to measure intrinsic permeability in the case of

negligible specific storage of rocks. The specific storage

coefficient of a rock sample, Ss, is defined as the volume

of water, per unit volume of saturated rock, injected into

the porosity when it is exposed to a unit increase of pore



Fig. 1. Transient pulse technique.
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fluid pressure. The specific storage is equally an impor-

tant property for characterizing transient flow fluid

[33,35,36]. Although the assumption of [2] may be rea-

sonable for some crystalline rocks, Hsieh et al. [12]

indicated that it is generally poor for rocks such as

shales and argillite, which have significant porosity and

compressive storage. These authors introduced the

determination of the specific storage of the rock through

the transient pulse test, and they presented a general

analytical solution of the pulse test. A thin cylindrical

rock sample connected to two fluid reservoirs (Fig. 1):

the upstream reservoir and the downstream reservoir, is

needed to conduct a pulse test. After the sample satu-

ration and the pore pressure homogenization the pres-

sure is suddenly increased in the upstream reservoir.

Generally speaking the intrinsic permeability and the

specific storage of the rock sample are deduced from

comparison between the pressure evolution into the two

reservoirs and theoretical curves.

1.2. Partially saturated case

The principle of the determination of the perme-

ability in the partially saturated domain is based upon

measures of weight loss and deformation of a sample

during a drying test. The kinetic of variations of weight

and deformation is linked to the permeability. Due to

the presence of gas and also to hydromechanical cou-

plings in rocks such as argillites, the coupled diffusion

process in partially saturated domain is highly non-lin-

ear. Those equations are, in the general case of partially

saturated porous media, highly non-linear due to the

presence of gas and numerical methods such as finite

element or finite volume have to be used to solve the

direct problem [5,9]. Example of estimate of transfer

parameter in concrete based on finite volume modelling

of drying tests can be found in [16]. Pintado et al. [21]

present results for coupled thermal–hydric parameters of

a bentonite based upon finite element modelling for di-

rect problem and inverse problem theory for identifica-
tion. In this paper a linearization method applied to

drying tests developed by Olchitzky [18] for a swelling

clay has been adapted for the argillites and used to ob-

tain order of magnitude of the permeability in the par-

tially saturated domain.
2. Coupled hydromechanical model

2.1. Constitutive equations for the partially saturated

medium

Let a porous medium be composed of a deformable

matrix, and be partially saturated by an incompressible

liquid (subscript lq) in equilibrium with its vapour

(subscript vp), while the vapour forms an ideal mixture

(subscript gz) with another gas (dry air, subscript da). A

phase change between the liquid and its vapour is pos-

sible. Darcy’s laws and Fick’s laws are respectively taken

into account to model the diffusion of the mixture (dry

air and vapour), the liquid, and the diffusion of the va-

pour in the mixture. Assuming isothermal conditions,

the linear porous elastic model consists of three balance

equations: dry air mass, water species mass (both liquid

and vapour) and linear momentum of the multiphase

media. The non-linear isotropic poroelastic constitutive

equations for partially saturated media (see Ref. [6]) can

be written incrementally as (a; b ¼ lq; vp; da, summation
on b):

drm ¼ K0 dev � ba dpa

drm ¼ Kun dev � baMab
dmb

qb

ð1Þ

dsij ¼ 2Gdeij ð2Þ

dpa ¼ Mab

�
� bb dev þ

dmb

qb

�
ð3Þ

where rm, s, ev, e, mi, qi, pi denote respectively the mean
stress, the deviatoric stress tensor, volumetric strain, the

deviatoric strain tensor, the fluid mass supplies, the

partial pressures and the density of the constituents

ðl; v; aÞ. K0 and Kun denote respectively the drained

(dpi ¼ 0 for i ¼ lq, vp, da) and undrained bulk moduli

(dmi ¼ 0, for i ¼ lq, vp, da), bi and Mij represent Biot

coefficients and Biot moduli for unsaturated poroelastic

media. By inverting Eqs. (3), fluid mass supplies can be

expressed in terms of partial pressures and volumetric

strain:

dma

qa

¼ ba dev þ Nab dpb ð4Þ

The deviatoric behaviour equation (2) is not coupled to

the volume change behaviour equation (1). In the gen-

eral case, bulk moduli, Biot coefficients ba, Biot moduli

Mab and Nab coefficients are functions of volumetric
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strain, partial pressures pa and temperature. Experi-

mental determination of poroelastic parameters ba, Nab,

Mab for materials such as concrete and clays is discussed

in Ref. [19]. Detailed expressions of bi and Nab coeffi-

cients are given in Appendix A. Biot coefficients ba and

Nab are functions of partial pressures pa, liquid satura-

tion Slq, the derivative of liquid saturation relative to

capillary pressure pcp ¼ pgz � plq and a constant coeffi-

cient b (Biot’s constant). Dry air pressure pda can be

expressed in terms of total gas pressure and vapour

pressure pda ¼ pgz � pvp. The vapour pressure can be

eliminated using the thermodynamic equilibrium rela-

tion between water liquid and water vapour [6]:

pvp
p0vp

¼ exp
Mol

vp

qlqRT
ðplq

 
� p0lqÞ

!
ð5Þ

where the index 0 refers to a saturated reference state

(p0cp ¼ 0, p0lq ¼ p0gz ¼ patm), Mol
vp, R and hr respectively

represent the molar vapour mass the universal gas con-

stant and the relative humidity. p0vp denotes the vapour
pressure in a water saturated air (plq ¼ pgz ¼ patm). It is a
function of the temperature (T in Kelvin) which can be

calculated thanks to the relation (Ref. [3]):

p0vp ¼ psatvp ðT Þ ¼ 10
2:7858þ T�273:5

31:559þ0:1354ðT�273:5Þ ð6Þ

Two independent pressures can be chosen as state vari-

ables between liquid pressure, gas pressure, and capillary

pressure.

2.2. Conduction equations for multiphase flow

By applying Darcy’s generalised law for multiphase

flow in unsaturated media, the velocity of liquid and the

average relative molar velocity of gas mixture are gov-

erned by (gravity is neglected):

M lq

qlq

¼ �klq$plq ð7Þ

Mgz

qgz

¼ �kgz$pgz ð8Þ

where klq and kgz denote respectively Darcy’s conduc-

tivity for liquid and gas:

klq ¼
kinKrel

lq ðSlqÞ
llq

; kgz ¼
kinKrel

gz ðSlqÞ
lgz

ð9Þ

kin, Krel
lq , K

rel
gz , llq, lgz, F denote respectively the intrinsic

and relative permeabilities to liquid and gas, and dy-

namic viscosities. The diffusion of the vapour in the gas

mixture is taken into account using Fick’s law:

Mvp

qvp

�Mda

qda

¼ �F$C vp; Cvp ¼
pvp
pgz

ð10Þ
where F represents Fick’s coefficient (see Refs. [16,20,

29]). By combining the Darcy and Fick relations two

conduction laws can be written for water liquid, water

vapour and dry air in terms of capillary and gas pressure

gradients:

M lq þMvp ¼ �Klc$pcp � Klg$pgz ð11Þ

Mda ¼ �Kgc$pcp � Kgg$pgz ð12Þ

Detailed expression of coefficients Ki are given in

Appendix A.

2.3. Momentum and diffusion equations

The linear momentum equation can be expressed as

follows (by neglecting gravity):

$ 	 r ¼ 0 ð13Þ

The mass conservation equations for the water species

and dry air reads:

o

ot
½mlq þ mvp� ¼ �$ 	 ½M lq þMvp�

omda

ot
¼ �$ 	 ½Mda�

ð14Þ

The field equations can be obtained by inserting Darcy’s

and Fick’s conduction laws and also the constitutive

poroelastic equations into Eqs. (13) and (14). The two

non-linear diffusion equations take the form:

Cle
oev
ot

þ Clc

opcp
ot

þ Clg

opgz
ot

¼ $ 	 ½Klc$pcp� þ $ 	 ½Klg$pgz� ð15Þ

Cge
oev
ot

þ Cgc

opcp
ot

þ Cgg

opgz
ot

¼ $ 	 ½Kgc$pcp� þ $ 	 ½Kgg$pgz� ð16Þ

where Cij and Kij coefficients are functions of prime

variables (see Appendix A for detailed expressions). In

what follows, gravity terms will be neglected.
2.4. Constitutive equations for the fully saturated medium

The limiting saturated case is obtained by introduc-

ing the following conditions:

pcp ! 0

SlqðpcpÞ ! Slqð0Þ ¼ 1

oSlqðpcpÞ
opcp

! oSlq
opcp

� �
pcp¼0

¼ 0

ð17Þ

in the general constitutive equations (1), (4) and (3). Fi-

nally, the diffusion equation can be simply expressed as:
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b
oev
ot

þ N
�

þ /
Klq

�
oplq
ot

¼ klq$ 	 ½$plq� ð18Þ

or in terms of mean stress rm:

b
K0

orm

ot
þ N
�

þ /
Klq

þ b2

K0

�
oplq
ot

¼ klq$ 	 ½$plq� ð19Þ

where

N þ /
Klq

þ b2

K0

¼ Kun

MK0

ð20Þ

1

M
¼ N þ /

Klq

ð21Þ

M is the Biot modulus of the saturated porous medium

and Kun is the undrained bulk modulus.

2.5. Relation between poroelastic and classical transfer

parameters

The uncoupling hydraulic diffusion equation is clas-

sically written in terms of specific storage coefficient Ss
and apparent permeability Kap:

Ss
oplq
ot

� Kap$ 	 ½$plq� ¼ 0 ð22Þ

The relation between hydraulic conductivity klq and

apparent permeability Kap in the saturated case:

klq ¼
k
llq

¼ Kap

clq
ð23Þ

and the comparison between the uncoupling equation

(22) and the hydromechanical coupling equations (18)

and (19) allows to express the specific storage coefficient

Ss in terms of poroelastic coefficients in two particular

cases. For a test with zero deformation (18) one obtains:

Se
s ¼ clq

1

M
ð24Þ

and for a test with constant mean stress:

Sr
s ¼ clq

1

M
Kun

K0

ð25Þ

The ratio between the two specific storage coefficient is

given by the ratio between undrained and drained bulk

moduli:

Sr
s

Se
s

¼ Kun

K0

ð26Þ

As an example, in the case of the argillite studied in this

paper, the poroelastic data b ¼ 0:75, / ¼ 0:1, K0 ¼ 4000

MPa, Klq ¼ 2200 MPa, M ¼ 11600 MPa, Kun ¼ K0 þ
b2M ¼ 10525 MPa one obtains:

Sr
s � 2:6Se

s ð27Þ
This numerical application shows the possible impor-

tance of hydromechanical couplings and it gives also

order of magnitude of specific storage coefficient. It will

be noticed in the next section that the correct condition

for the pulse test is more close to constant stress than to

zero deformation. The corresponding expression (25)

will be used in the rest of the paper.
3. Pulse test for the saturated case

3.1. Initial and boundary conditions

One considers a cylindrical sample of radius R and

height L submitted to hydrostatic stress. Initially, the

sample is saturated and the liquid pressure and mean

stress inside the sample are homogeneous (p0lq, r0
m):

plqðx; t ¼ 0Þ ¼ p0lq ð28Þ

rmðx; t ¼ 0Þ ¼ r0
m ð29Þ

where x represents the position vector. The lateral sur-

face CR of the sample is insulated:

M lq 	 n ¼ 0 on CR ð30Þ

The liquid pressure is suppose homogeneous in the two

reservoirs: downstream reservoir ðz ¼ 0Þ and upstream

reservoir ðz ¼ LÞ where z denotes the axial coordinate:

plqðx; tÞ ¼ pureðtÞ on CL

plqðx; tÞ ¼ pdreðtÞ on C0

ð31Þ

A sudden increment of liquid pressure, is carried out in

the upstream reservoir:

pureð0þÞ ¼ p0lq þ Dp ð32Þ

The conservation of liquid mass give the two boundary

conditions between the sample and the reservoirs:

ofu

ot
¼
Z

CL

�klq$plqðx; tÞ 	 nda

ofd

ot
¼
Z

C0

�klq$plqðx; tÞ 	 nda

fu ¼
Mu

lq

qlq

; fd ¼
Md

lq

qlq

ð33Þ

Mu
lq, Md

lq, fu and fd denote respectively the mass and

volume of liquid contained in the upstream and down-

stream reservoirs. By assuming a linear relation between

the volume of liquid content in the reservoir and the

liquid pressure:

fu ¼ pure
Cu
re

; fd ¼ pdre
Cd
re

ð34Þ

The two coefficients Cu
re and Cd

re represent the com-

pressibilities of the reservoirs and can be expressed to
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the usual reservoir storage coefficients Sure and Sdre by

relations (see Ref. [12]):

Cu
re ¼

Sure
clq

; Cd
re ¼

Sdre
clq

ð35Þ

The boundary condition between reservoirs and sample

can be written as:Z
CL

�klq$plqðx; tÞ 	 nda ¼ 1

Cu
re

oplqðx; tÞ
ot

plqðx; tÞ ¼ pureðtÞ on CLZ
C0

�klq$plqðx; tÞ 	 nda ¼ 1

Cd
re

oplqðx; tÞ
ot

plqðx; tÞ ¼ pdreðtÞ on C0

ð36Þ
3.2. A simplified approach: hypothesis of constant mean

stress

Due to the coupling between hydraulic and

mechanical behaviour this problem is generally three-

dimensional, or two-dimensional with axial symmetry.

The rigorous method to solve this problem is to perform

coupled hydromechanical calculations by using finite

element code for example. Finite element modelling

have been performed on this problem and comparisons

between 2D-axisymmetrical and 1D analysis show that

hypothesis of constant mean stress in the sample and

one-dimensional flow is correct (relative error on pore

pressure in lower than 15%). The only space variable of

this problem is the vertical coordinate z and the equation
to solve can be written as:

Kun

MK0klq

oplq
ot

� o2plq
oz2

¼ 0 ð37Þ

oplq
oz

� �
z¼0

¼ 1

pR2Cd
reklq

dpdreðtÞ
dt

ð38Þ

oplq
oz

� �
z¼L

¼ � 1

pR2Cu
reklq

dpureðtÞ
dt

ð39Þ

By introducing dimensionless variables:

z� ¼ z
L
; t� ¼ Dt

L2
; x ¼

plq � p0lq
Dp

ð40Þ

D ¼ klqMK0

Kun

ð41Þ

b ¼ pR2LCu
reKun

MK0

; c ¼ Cu
re

Cd
re

ð42Þ
the problem to solve can be written:

ox
ot�

� o2x

oz�2
¼ 0

ox
oz�

� �
z�¼0

� c
b
dxd

reðt�Þ
dt�

¼ 0

ox
oz�

� �
z�¼1

þ 1

b
dxu

reðt�Þ
dt�

¼ 0

xðz�; 0Þ ¼ 0

xð1; t� ¼ 0þÞ ¼ xu
reð0þÞ ¼ 1

ð43Þ

Hsieh et al. [12] solved this initial-boundary value

problem by the Laplace transform method. The solution

of the system (43) in the Laplace transform space can

be written as:

�xðz�; sÞ ¼ b coshð ffiffi
s

p
z�Þ þ ffiffi

s
p

c sinhð ffiffi
s

p
z�Þ

sbð1þ cÞ coshð ffiffi
s

p Þ þ ffiffi
s

p ðb2 þ scÞ sinhð ffiffi
s

p Þ
ð44Þ

Three parameters D, b and c control evolution of pres-

sure in the two reservoirs. The solution in Laplace

transform space (44) allows the three parameters D, b
and c to be identified. In this case the compressibilities of
the up and down reservoirs (Cu

re and Cd
re) are known so

identification of b determines the ratio MK0=Kun. Finally

the comparison between diffusivity D and the ratio

MK0=Kun gives the liquid conductivity klq.

3.3. Parameter-identification technique: inverse problem

solution

Neuzil et al. [17] offered a graphical method to carry

out both hydraulic parameters (see Ref. [8] for details).

A more rigorous and objective approach is given by the

theory of inverse problem. The problem of parameter

identification is an inverse problem, also known as back

analysis (see Refs. [13,14,27]). Parameters-identification

theory have been applied to various field or laboratory

investigations [21,23,24,26]. The objective of the inverse

problem is to quantified and minimizing the difference

between experimental data and the corresponding com-

puted value in order to obtain unknown parameters. In

our case this method is applied to the identification of

argillite hydraulic and poroelastic parameters using the

difference between upstream and downstream pressure

measurements as input data. Then, the objective func-

tion which quantify the difference between the experi-

mental data and the corresponding theoretical value is

given by Eq. (45). The following presentation is based

upon Lecampion [13].

|ðcÞ ¼ 1

2

XMmes

i¼1
wi hðc; tiÞð � hmesðtiÞÞ2

hðc; tiÞ ¼
pureðc; tiÞ � pdreðc; tiÞ

Dp

hmesðtiÞ ¼
pumesðtiÞ � pdmesðtiÞ

Dpmes

ð45Þ
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where pumes, pdmes, pure, p
d
re denote respectively measured

upstream and downstream pressure and calculated up-

stream and downstream pressure. Mmes is the total

number of measured data points. wi is a weight coeffi-

cient. The vector c contains the constitutive parameters
to identify:

c ¼ fKun;K0;M ; klqg ð46Þ

On the basis of the previous section, this vector has been

chosen equal to:

c ¼ fD; bg ð47Þ

The objective function can be written as:

|ðcÞ ¼ 1

2
yT 	W 	 y ¼ 1

2
yiWijyj

Wij ¼ Wji

yi ¼ hi � hmesi

ð48Þ

By introducing a gradient matrix A and the Hessian

matrix Q respectively composed by first and second

derivative to parameters:

Aij ¼
oyi
ocj

; QmnðiÞ ¼
o2yi

ocm ocn
ð49Þ

The second order expansion of the objective function

|ðcÞ can be written as:

|ðcþ DcÞ ¼ |ðcÞ þ DcT 	 $c|ðcÞ þ
1

2
DcT 	 $2

c|ðcÞ 	 Dc

þOðDc3Þ ð50Þ

where

$c|ðcÞ ¼ AT 	W 	 y
o|

ocj
¼ AjiWikyk

$2
c|ðcÞ ¼ AT 	W 	 Aþ

X
i¼1;Mmes

QðiÞ 	 ðW 	 yÞi

o2|

oci ocj
¼ o2yk

oci ocj
Wklyl þ

oyk
ocj

Wkl
oyl
oci

ð51Þ

The stationary condition (zero gradient) of the objective

function writes:

$c|ðcÞ þ $2
c|ðcÞ 	 Dc ¼ 0 ð52Þ

The minimisation problem is highly non-linear. Conse-

quently an iterative minimisation approach is required.

Generally the optimization procedures that use the

gradient of the objective function are efficient. We used

the modified version of the Gauss–Newton method due

to Levenberg–Marquardt [10]. By neglecting second

order derivative QmnðiÞ and replacing them by a diagonal

parameter k

$2
c|ðcÞ � AT 	W 	 Aþ kI ð53Þ
the linear system corresponding to the stationary con-

dition of the objective function becomes:

Dc ¼ � AT 	W 	 A



þ kI
��1 	 ðAT 	W 	 yÞ ð54Þ

In this paper the weight coefficients Wij has been chosen

equal to unity:

W ¼ I ; Wij ¼ dij ð55Þ

Exact calculations of partial derivatives have been per-

formed in the Laplace transform domain to express

coefficients of sensitivity vector A. The Stehfest’s algo-

rithm [25] has been used to invert the Laplace transform

and return to the time domain. Due to the use of a

numerical method to invert the Laplace transform, the

approach is then semi-analytical. The limiting case of

small dimensionless time a values ðt� < 4� 10�3Þ is

treated thanks to a series solution method described by

Carslaw and Jaeger [4].
4. Experimental results

4.1. Specimen

The samples were cored at a depth about 470 and 500

m in Callovo-Oxfordien. It is the potential sedimentary

formation for a radioactive waste repository in Meuse/

Haute-Marne (in France). The clay mineral content is

about 40% (interstratified illite/smectite, illite, chlorite).

We use a water chemistry close to the hypothetical pore

water in order to avoid the water chemistry effects of the

pore fluid on the permeability. In addition the water

must be degassed to prevent bubbles formation. The

total calculated porosity is about 15% but it overesti-

mates the connecting porosity involved in the transport

phenomenon. The right cylindrical samples are realized

with a diamond core drill and precision grinding. The

sample diameter is about 3.8 · 10�2 m for 1.5· 10�2 m in

length. A lot of care were taken to avoid the loss of

water content until the permeability test.

4.2. Test procedures

The design of the original experimental device

developed for argillites has been presented in Escoffier

et al. [8]. The upstream and downstream reservoirs

storage must be determined before the pulse test exper-

iment. In order to isolate the upstream reservoir from

the downstream reservoir an encapsulated cylindrical

aluminium specimen is stand between the two end caps.

Then a hydrostatic pressure is applied to ensure the

insulation of both reservoirs and the compressive stor-

age of both reservoirs could be easily determined. For

the test conducted on these argillite the upstream volume

reservoir was 3.06 cm3 and the downstream volume

reservoir was 2.54 cm3. Their compressibilities are carry



Table 2

Results of saturated pulse test (sample 4)

Specimen 4

Temperature T (K) 293

Depth H (m) 475

Porosity /0 0.16

Initial effective stress (Pa) 6.3 · 106
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out in the range of 1–7 MPa. For these testing condi-

tions, the compressive storage of the reservoirs is prac-

tically constant. The measured compressibility in the

upstream reservoir was about Cu
re � 5–6 · 10�15 m3 Pa�1.

In addition the ratio of the downstream reservoir stor-

age to the upstream reservoir storage was about

Cd
re=C

u
re � 1:4.
Liquid conductivity klq (m2/Pa/s) 5.13· 10�18
Liquid diffusivity D (m2/s) 3.22· 10�09
Apparent liquid permeability

K ¼ clqklq (m/s)
5.13· 10�14

20000 40000 60000 80000
t (s)

0.2

0.4

0.6

0.8

∆P (MPa)
saturated pulse test

identified

measured

Fig. 2. Results of the pulse tests performed on the Meuse/

Haute-Marne argillite.
4.3. Results

Several months were necessary to conduct tests on

this very low permeability rock (for instance more than

three weeks were required to saturate a thin sample).

After the sample saturation the hydraulic properties of

the argillite were determined under hydrostatic loading.

The experimental pore pressure responses have been

analysed by inverse method. The pulse test method has

been performed on five samples. The intrinsic perme-

ability and the specific storage have been obtained under

three different effective hydrostatic loading ranging from

2 to 19 MPa. The results obtained for the first three

samples are given in Table 1 (see also [8] for corre-

sponding curves). For these test conditions, the intrinsic

permeability and the specific storage coefficient do not

decrease with the increase of the hydrostatic loading.

Based on the reservoirs storage design devices, the res-

ervoirs storages are well adapted to the sample dimen-

sions and the argillite hydraulic properties. Results

obtained for another sample are presented in Table 2

and Fig. 2. The diffusivity sensitivity of the sample

pressure response is more influenced by the apparatus

design than the permeability sensitivity. An important

dispersion can be noticed on liquid diffusivity for the
Table 1

Results of saturated pulse tests (samples 1–2–3)

Effective stress (106 Pa

2.3 2.1

Specimen 1

Liquid diffusivity D (10�09 m2/s) 2.67 2.83

Liquid conductivity klq (10�18 m2/Pa/s) 8.0 8.5

Intrinsic permeability kin (10�21 m2) 8.0 8.5

2.6 2.3

Specimen 2

Liquid diffusivity D (10�09 m2/s) 20 23

Liquid conductivity klq (10�18 m2/Pa/s) 18 23

Intrinsic permeability kin (10�21 m2) 18 23

3 3

Specimen 3

Liquid diffusivity D (10�09 m2/s) 200 200

Liquid conductivity klq (10�18 m2/Pa/s) 40 30

Intrinsic permeability kin (10�21 m2) 40 30
tested samples. Two orders of magnitude are observed

between minimal and maximal diffusivity values (3�
10�9 6D6 200� 10�9 m2/s). Under these effective

hydrostatic conditions the intrinsic permeability kin and
)

5 4.8 7.7 6.9

11.1 4.0 1.05 5.0

10 8.0 4.2 5.0

10 8.0 4.2 5.0

8.9 7.5 16.8

28 37 37

25 30 15

25 30 15

9 9 19

133 40

20 20 40

20 20 40



Table 3

Poroelastic data and dimensions

Depth (m) 500
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the specific storage coefficient Ss respectively range from
0.4· 10�20 to 12· 10�20 m2 and from 0.15 · 10�5 to

3· 10�5 m�1.
Biot coefficient b 0.75

Drained bulk modulus K0 (Pa) 4.0 · 109
Initial radius R0 (m) 25 · 10�3
Initial length L (m) 18 · 10�3
Initial porosity /0 0.16
5. Drying tests for the partially saturated case

5.1. Experimental device design

The principle of the determination of the perme-

ability of the argillite in the partially saturated domain is

based upon measures of weight loss and deformation of

a sample during a drying test. The kinetic of variations

of weight and deformation is linked to the permeability.

A cylindrical sample of radius R and height L of a par-

tially saturated rock is introduce inside a hermetic

chamber in which the relative humidity is maintained

constant with a saline solution. The chosen dimensions

of sample for experiments are R � 25 mm and L � 20

mm in order to obtain maximal exchange on bottom

ðz ¼ 0Þ and top faces ðz ¼ LÞ relatively to lateral surface

ðr ¼ RÞ and to minimize axial diffusion time. Due to the

very little dimensions of the sample, the mass variations

to measure are very small. As an example, a fully satu-

rated sample with porosity / ¼ 0:15 contains approxi-

mately Mlq � 5:9 g (mass of water liquid water) which

gives the order of magnitude of the maximal mass

variations during very long tests (several months). The

main difficulty of theses tests on low permeable and low

porosity rocks such as argillites is due to the very little

mass variation to measure and then to the very high

precision needed in weighing machine and in control of

temperature and relative humidity in the hermetic

chamber. A specific and original test device has been

developed for these tests (see Fig. 3) (Table 3).
Fig. 3. Experimental device for permeabil
5.2. Initial and boundary conditions

Thanks to the Kelvin relation (see Eq. (5)), the rel-

ative humidity of the chamber corresponds to a capillary

pressure imposed at the outer boundary of the sample.

Initially, the sample is supposed to be in thermody-

namical equilibrium with the air in the isolated chamber

(of relative humidity h0r ) so partially saturated and the

capillary pressure, gas pressure, vapour pressure and

mean stress inside the sample are homogeneous (p0i , r
0
m).

For a given saline solution, at a constant temperature

T ¼ 293 K, the initial pressures can be calculated thanks

to the relations:

pcpðx; t ¼ 0Þ ¼ �
qlqRT

Mol
vp

lnðh0r Þ ð56Þ

pgzðx; t ¼ 0Þ ¼ patm ð57Þ

pvpðx; t ¼ 0Þ ¼ psatvp ðT Þh0r ð58Þ

rijðx; t ¼ 0Þ ¼ �patmdij ð59Þ

At time t ¼ 0þ, the saline solution is changed and the air

in the chamber has a new relative humidity himpr . This

change induces a variation of the capillary pressure on

the outer boundary of the sample (denoted oX) which is

supposed uniform:
ity tests in partially saturated rocks.
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pcpðx; t
�

¼ 0þÞ


x2oX ¼ �

qlqRT

Mol
vp

lnðhimpr Þ ð60Þ

pgzðx; t
�

¼ 0þÞ


x2oX ¼ patm ð61Þ

rnðx; t½ ¼ 0þÞ�x2oX ¼ �patm ð62Þ

The direct problem is defined by Dirichlet hydraulic

boundary conditions and by zero normal stress. It can

be noticed that the real problem is simplified because the

variation of capillary pressure on the outer boundary of

the sample is supposed instantaneous. Due to coupling

effects between Darcy and Fick diffusion processes,

variations of gas pressure can be theoretically observed

inside the sample. An increase of relative humidity in-

duces swelling whereas a decrease of relative humidity

induces shrinkage. The direct problem is defined by

initial conditions, boundary conditions, and field equa-

tions constituted by momentum equation and diffusion

equations for water and air (see Eqs. (13), (15), (16), (59)

and (62)).
5.3. A simplified approach: one-dimensional linearized

direct problem

As previously indicated the constitutive non-linear

poroelastic model is strongly non-linear. Poroelastic

coefficients, and diffusion coefficients are function

depending on liquid saturation Slq and its derivative,

deformation, partial pressures and temperature. Fur-

thermore, the highly non-linear character of the diffu-

sion process for non-saturated porous materials such as

argillite must not be under-evaluated so a direct linear-

ization of transfer and equilibrium equations must be

performed carefully. Another source of non-linearity is

the non-reversible behaviour of the unsaturated porous

materials: plasticity, damage, or plasticity coupled with

damage are not taken into account in this paper (see

[11]). Numerical methods such as finite element [15,28,

29], finite difference or finite volume methods [9,16,30]

can be used to solve those non-linear partial differential

equations. The linear poroelastic analysis presented in

this section can be considered as a first approach. This

approach does not aim to accurately characterize per-

meability but to obtain a correct order of magnitude on

the basis of simplified assumptions. A linear model en-

ables explicit solutions to be established and then make

easier the solution of the inverse problem. The analytical

method presented in this section has been obtained by

Olchitzky [18] for the same problem of permeability

determination in a Fo–Ca clay barrier. It will be noted

that a similar analytical approach to the initially non-

linear problem of heat-induced moisture movement in

the vicinity of a spherical heat source has been presented

by Basha and Selvadurai [1]. Another interesting ana-

lytical analysis of non-linear hygrothermal diffusion in
unsaturated porous medium can be found in Yong et al.

[34]. Analytical methods have to be used very carefully

but they offer general insight into the physical phe-

nomena and can be used to provide approximations of

certain couplings effects. A recent linear approach to

analysis of heat and moisture transfer in capillary por-

ous media has been presented by Dantas et al. [7]. The

linear poroelastic model is obtained by assuming that all

functions Nij, bi, Kij, qi are constant, equal to the values

of these functions calculated at the reference state de-

noted by index 0. Particularly in coupling coefficients,

the liquid saturation Slq and its derivative dSlq=dpcq are
taken as being constant, equal to S0lq ¼ Slqðp0cpÞ and

S0
lq0 ¼ dSlq= dpcpðp0cpÞ. The liquid saturation is then a

posteriori calculated by using the linearized saturation–

capillary pressure curve:

SlqðpcpÞ ¼ S0lq þ S0
lq0ðpcp � p0cpÞ ð63Þ

It must be emphasized that this approximation is valid

only for small variations around the initial value p0cp. The
hypothesises introduced by [18] to obtain an analytical

solution for the problem of drying can be listed as fol-

lows: gas pressure is supposed to remain constant in the

sample, equal to the atmospheric pressure patm, Fick
diffusion is neglected ðF ¼ 0Þ and then only Darcy

relation for liquid (Eq. (7)) is used to describe the

moisture transport, lateral face ðr ¼ RÞ is supposed

insulated so the flow of moisture is one-dimensional.

Total mass variation is supposed equal to the liquid

mass variation. The linearized poroelastic constitutive

equation (4) becomes:

dmlq

qlq

¼ bS0lq dev � /0

S0lq
Klq

  
� S0

lq0

!
þ NS0

2

lq

!
dpcp ð64Þ

The equations are similar to those of the consolidation

problem for the saturated poroelastic medium (pore

pressure equation, see Ref. [6]). By neglecting lateral

liquid mass exchange and lateral deformation one

obtains a one-dimensional coupled linear poroelastic

problem to solve with initial and boundary conditions

(taking into account symmetry):

pcpðz; t ¼ 0Þ ¼ p0cp

opcp
oz

� �
ðz ¼ 0; t > 0Þ ¼ 0

nzðz ¼ 0; t > 0Þ ¼ 0

pcpðz ¼ L=2; t > 0Þ ¼ pimpcp ¼ p1cp

rzzðz ¼ L=2; t > 0Þ ¼ �patm

ð65Þ

where nz denotes the axial displacement. The momentum

equation (13):
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orzz

oz
¼ 0 ð66Þ

and linearized poroelastic constitutive equations (1) and

(2) give:

ev ¼
onz

oz
¼ �

bS0lq
k0 þ 2G

ðpcp � p0cpÞ ð67Þ

Relations (64) and (67) allows to express volumetric

deformation in terms of capillary pressure. By integrat-

ing relation (64) one obtains:

mlq � m0
lq

qlq

¼ �g0ðpcp � p0cpÞ

g0 ¼
b2

k0 þ 2G

�
þ N

�
ðS0lqÞ

2 þ /0

S0lq
Klq

 
� S 00

lq

! ð68Þ

The parameter g0 (unit Pa
�1) is similar to a specific heat

coefficient for a thermal problem, or a specific storage

coefficient in hydrogeology. It may be noticed that this

is a coupled hydromechanical parameter so the identi-

fication of g0 gives information on poromechanical

coefficients (drained Lam�e coefficients k0 and shear

coefficient G). An increase of capillary pressure induces a
weight loss and then a negative variation of liquid mass

content. Finally the one-dimensional linear diffusion to

solve can be written:

opcp
ot

� D0

o2pcp
oz2

¼ 0

D0 ¼
k0lq
g0

ð69Þ

The solution of this one-dimensional linear problem

can be expressed with a serie (see [6]):

pcpðz; tÞ � p0cp ¼ pimpcp

�
� p0cp

�
1

"
�
X1
n¼0

YnðtÞ
#

YnðtÞ ¼
4ð�1Þnþ1

ð2nþ 1Þp cosðxnzÞ expð�D0x
2
ntÞ

xn ¼
ð2nþ 1Þp

L

ð70Þ

By integrating the volumetric liquid mass content over

the initial volume of the sample one obtains the total

liquid mass variation:

DMlqðtÞ ¼ 2pR2

Z L=2

0

mlqðz; tÞ
�

� m0
lq

�
dz ð71Þ

and then ðX ¼ pR2LÞ:

DMlqðtÞ ¼ �qlqX pimpcp

�
� p0cp

�
g0 1

"
�
X1
n¼0

EnðtÞ
#

EnðtÞ ¼
8

ð2nþ 1Þ2p2
exp

 
�

k0lq
g0

x2
nt

! ð72Þ
5.4. Experimental results and identification

A sample cored at a depth about 500 m, as the

specimen number 3 previously studied by pulse test in

saturated conditions, in clayey Callovo-Oxfordien has

been firstly submitted to an initial constant relative

humidity h0r ¼ 98% in an hermetic chamber. The saline

solution in the hermetic chamber CuSO4 Æ 5H2O has

been replaced by KNO3 in order to impose a decrease of

relative humidity ðhimpr ¼ 93%Þ. Data relative to this test

are recalled in Table 4: it is the test denoted A. After the

test A, the same sample has been submitted a long time

to a new relative humidity himpr ¼ 85% imposed by the

saline solution KCl which corresponds to the initial

condition of the test B. The saline solution in the her-

metic chamber KCl has been replaced by NaCl to im-

pose a new decrease of relative humidity ðhimpr ¼ 75%Þ.
The desorption curve of this material has been charac-

terized thanks to a microgravimeter test (GAETAN test,

see [22]). Experimental results have been fitted by using

Vachaud–Vauclin function (Eq. (73), Refs. [31,32] and

Figs. 4 and 5):

SlqðpcpÞ ¼
avv

avv þ pcp
104


 �bvv ; avv ¼ 13929:1; bvv ¼ 1:038

ð73Þ

During the test, the total mass of the sample is regularly

measured. Under the hypothesis of the study, variations

of mass of gas and vapour are neglected and the total

mass variation is supposed equal to the total liquid mass

variation in the sample. The c vector of the constitutive
parameters to identify has been chosen equal to:

c ¼ fk0lq; g0g ð74Þ

The first parameter, the liquid conductivity, mainly

controls the transient evolution whereas the second

parameter, g0, is linked to the asymptotic (or maximal)

liquid mass exchange. The relative variation of the total

mass has been used for identification procedure:

hðc; tiÞ ¼
DMlqðtiÞ

M0

hmesðtiÞ ¼
MmesðtiÞ �M0

M0

ð75Þ

hence:

hðc; tiÞ ¼ �A0g0 1

"
�
X1
n¼1

EnðtiÞ
#

A0 ¼
qlqX0 pimpcp � p0cp

� �
M0

ð76Þ

The identification of the two parameters has been per-

formed by using the optimization procedure described

previously for the pulse test. In the case of the linearized



Table 4

Results of drying tests

A B

Temperature T (K) 293 293

Initial saline solution CuSO4 Æ 5H2O KCl

Initial relative humidity h0r (%) 98.0 85.1

Initial capillary pressure p0cp (Pa) 2.77· 106 9.51· 106

Saline solution KNO3 NaCl

Imposed relative humidity himpr (%) 93.2 75.4

Imposed capillary pressure pimpcp (Pa) 21.8· 106 38.2· 106

Initial saturation (calculated) S0lq 0.969 0.770

Asymptotic saturation (calculated) S1
lq 0.891 0.645

Volumetric deformation (calculated) e1 )1.18· 10�3 )2.17· 10�3
Porosity variation (calculated) D/ )9.25· 10�4 )1.71· 10�3

Liquid conductivity k0lq (m
2/Pa/s) 1.88· 10�18 1.57· 10�19

Equivalent specific storage coefficient g0 (1/Pa) 1.50· 10�9 1.33· 10�09
Liquid diffusivity D (m2/s) 1.25· 10�9 1.18· 10�10
Apparent liquid permeability K ¼ clqk

0
lq (m/s) 1.88· 10�14 1.57· 10�15

2 × 108 4 × × ×108 6 108 8 108
pcp (Pa)

0.2

0.4

0.6

0.8

1
Slq Vachaud–Vauclin
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measured

Fig. 4. Sorption curve for the argillite (microgravimeter test).
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Fig. 5. Sorption curve for the argillite (microgravimeter test).
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Fig. 6. Relative mass variation for imposed relative humidity

93%.
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drying test, the sensitivity vector is calculated by deriv-

ing the analytical solution (76):

ohðc; tiÞ
ok0lq

¼ A0g0
X1
n¼1

oEnðtiÞ
ok0lq

ð77Þ

ohðc; tiÞ
og0

¼ �A0 1

 
�
X1
n¼1

EnðtiÞ � g0
X1
n¼1

oEnðtiÞ
og0

!
ð78Þ

oEnðtiÞ
ok0lq

¼ � 8ti
L2g0

exp

 
�

k0lq
g0

x2
nti

!
ð79Þ

oEnðtiÞ
og0

¼
8k0lqti
L2g20

exp

 
�

k0lq
g0

x2
nti

!
ð80Þ

On the basis of the linearization process, the initial value

of g0 parameter is calculated thanks to relation (68).

Identification have been performed in two steps. A first

step corresponding to optimization on one parameter,

liquid conductivity k0lq by keeping g0 constant, which

gives the initial values k0ð0Þlq and gð0Þ
0 for the second step:

optimization process on the two parameters. Results of

identification are summarized in Table 4. Measures and
identified relative mass variations are compared in Figs.

6 and 7. It can be noticed that a decrease of liquid

permeability of approximately one order of magnitude

can be observed by comparing the two ranges of relative

humidity. A third test will be performed, on the same

sample, with lower relative humidities. It will be used to

identify relative permeability to liquid. Comparisons

between saturated and partially saturated tests show
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Fig. 7. Relative mass variation for imposed relative humidity
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that liquid diffusivity and liquid permeability decrease

with a decrease of liquid saturation. Other tests in sat-

urated and partially conditions have to be performed to

obtain more precise conclusions.
6. Conclusions

Experimental apparatus design is of fundamental

importance to ensure the sensitivity of a pulse test

experiment with respect to the intrinsic permeability and

specific storage coefficient of a rock sample. First of all

the experimental setup must take into account the ratio

of the sample storage to the upstream reservoir storage.

Secondly the time response which is linked to the

intrinsic permeability must ranging from several hours

to one day depending on the experimental device limits.

Pressure sensitivity study, with respect to both hydraulic

parameters, indicates that the specific storage sensitivity

of the sample pressure response is more influenced by

the apparatus design than the permeability sensitivity,

but it does not take into account the response time.

Anyway this approach indicates the part of the pressure

response, which is the most influenced by both para-

meters. A back analysis of both parameters Kap and Ss
from pulse test is proposed. This inverse problem is

based on an iterative minimisation approach of an

objective function: the Levenberg–Marquardt method.

The first derivatives of the error function with respect to

hydraulics parameters are needed. There analytical

expressions have been obtain through the Laplace

transform domain. Then this method has been success-

fully applied on these very low permeability rocks.

Due to the very little dimensions of the tested sam-

ples, the low porosity and the very low permeability the

mass variations to measure during drying tests are very

small (lower than 1 	 g for the two cases presented!). It

makes very difficult the design of the experimental de-

vice. Very high precision are needed in weighing device

and in control of temperature and relative humidity in

an hermetic chamber. The original test device developed

has been used to obtain the first results presented in this
paper. Work actually under way concern the simplified

hypothesises, linear models as well as one-dimensional

geometries, adopted in this paper. More accurate

determination of the permeability will be obtained by

taking into account non-linearities neglected in this

paper and also two-dimensional effects thanks to cou-

pled hygromechanical finite element modellings.

The influence of the hydromechanical coupling in

saturated and partially saturated cases, is mainly con-

centrated on equivalent storage coefficient, analogous to

heat capacities for thermal problems. The identification

method based upon transient tests, pulse tests as well as

drying tests, allows to identify the diffusivity and then

the storage coefficient and permeability. An error upon

analysis of hydromechanical coupling induces an error

in interpretation of storage coefficients and consequently

in deduced permeability. From a poromechanical point

of view, those transient tests are very important because

they give information not only on transfer parameters

but also on poromechanical parameters. In such a kind

of materials with low but not negligible porosity, and

very low permeability, coupled poromechanical experi-

ments are very difficult to perform. As an example, some

parameters such as drained coefficients, Biot coefficients

or Biot moduli in the partially saturated case, cannot be

directly measured in this kind of material. Coherent

estimates or coherent ranges of variation of these

parameters can only, in many cases, be deduced from

coupled hydromechanical back analyses such as those

presented in this paper.

Concerning the rheological model adopted for the

argillites, the preliminary results show that the uncou-

pling hypothesis between saturation (which is supposed

to depend only on capillary pressure) and deformation

seems to be irrelevant.
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Appendix A

A.1. Poroelastic coefficients

By taking into account the hypothesis of perfect

mixture of perfect gases, bi and Nij coefficients can be

written as (see [19]):

blq ¼ bSlq; bvp ¼ bda ¼ bgz ¼ bð1� SlqÞ; b ¼ 1� K0

Ks

ðA:1Þ
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Nda vp ¼ Nvp da ¼ Ngz ¼ N/ð1� SlqÞ � Nlq

Nlq vp ¼ Nlq da ¼ Nvp lq ¼ Nda lq ¼ Nlq

Nlq lq ¼ NSlq þ
/Slq
Klq

� Nlq

Nvp vp ¼ Ngz þ
/ð1� SlqÞ

pvp

Nda da ¼ Ngz þ
/ð1� SlqÞ

pda

Nlq ¼ /
oSlq
opcp

þ NSlqð1� SlqÞ

N ¼ ð1� bÞðb� /Þ
K0

ðA:2Þ

Klq and Ks respectively denote the bulk moduli of the

liquid and the solid particles (or grain material).

A.2. Coupled conductivities

Klc ¼ klqqlq þ
F ðpgz � pvpÞq2

vp

p2gzqlq

Klg ¼ �klqqlq � kgzqvp �
F ðpgz � pvpÞqvpðpgzqvp � pvpqlqÞ

p3gzqlq

Kgc ¼ �
Fpvpqdaqvp

p2gzqlq

Kgg ¼ qda

0
@� kgz þ

Fpvp � pvp þ
pgzqvp

qlq

� �
p3gz

1
A

qda ¼
Mol

daðpgz � pvpÞ
RT

; qvp ¼
Mol

vppvp
RT

ðA:3Þ
whereMol

da andMol
vp respectively represent the molar mass

of dry air and water vapour.

A.3. Coupled capacities

Cle ¼ b Slqðqlq



� qvpÞ þ qvp

�
Cge ¼ bð1� SlqÞqda

Clc ¼ �
ð/ þ NKlqÞSlqqlq

Klq

� �
þ Nlqðqlq � qvpÞ

�
/ð1� SlqÞq2

vp

pvpqlq

Clg ¼
ð/ þ NKlqÞSlqqlq

Klq

þ Nð1� SlqÞqvp

þ
/ð1� SlqÞq2

vp

pvpqlq

Cgc ¼ qda

 
� Nlq þ

/ð1� SlqÞqvp

ðpgz � pvpÞqlq

!

Cgg ¼ ð1� SlqÞqda N

 
þ

/ðqlq � qvpÞ
ðpgz � pvpÞqlq

!

ðA:4Þ
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